
As florestas azuis referem-se a habitats costeiros e marinhos com vegetação, nomeadamente mangais, prados de ervas marinhas, florestas de kelp e sapais. Dado o seu papel fundamental e a sua eficiência no sequestro de gases com efeito de estufa que, de outro modo, provocariam alterações climáticas, são consideradas super-heróis do clima.
O termo “azul” significa que estes habitats, os seus ecossistemas e a natureza do seu armazenamento de carbono ocorrem perto e debaixo do mar. Em comparação, as florestas “verdes” são normalmente referidas como vegetação terrestre; assim, o carbono verde é o carbono contido na vegetação viva e no solo dos ecossistemas florestais do reino terrestre. O carbono azul, no entanto, é o carbono armazenado nos ecossistemas costeiros e marinhos.
As florestas azuis, por vezes designadas por ecossistemas de carbono azul, são únicas e fundamentais para estabilizar o clima do nosso planeta. Embora cubram apenas cerca de 4% da área terrestre total e 11% dos oceanos, estão entre os ecossistemas mais produtivos do planeta1 Também protegem as nossas costas das inundações, da erosão, das tempestades e dos ventos. Fornecem abrigo e alimento à vida selvagem e proporcionam meios de subsistência às comunidades.
Os mangais, as ervas marinhas e os sapais capturam e armazenam quantidades surpreendentes de dióxido de carbono em sumidouros naturais – ou seja, o carbono azul. Proteger e restaurar estes habitats de carbono azul, uma solução climática baseada na natureza, é uma forma económica de ajudar a evitar uma degradação climática perigosa, proporcionando simultaneamente outros benefícios às pessoas e ao planeta.
Para ir mais fundo…
Ver mais sobre carbono verde e azul: Carbono Verde e Azul: O papel dos habitats na mitigação das emissões de carbono2
Os mangais são um dos habitats mais densos em carbono da Terra, capazes de ser dez vezes mais eficazes no sequestro de dióxido de carbono por área e por ano do que as florestas boreais, temperadas ou tropicais.3, 4 Esta floresta azul será vital para alcançar a retirada de carbono em grande escala, essencial se conseguirmos limitar o aquecimento global a 1,5 °C, tal como referido pelo Painel Intergovernamental sobre Alterações Climáticas (IPCC). Apesar da extensão mundial limitada das florestas de mangue, confinadas à isoterma de 20 °C com aproximadamente 0,7 % das florestas tropicais,5 são sumidouros de carbono importantes a nível mundial devido à sua eficiência na assimilação de carbono, incluindo o seu armazenamento abaixo do solo. Além disso, proporcionam habitats essenciais para muitas espécies6
Características dos mangais
Estima-se que os mangais cubram 147 000 km2 a nível mundial. Crescem na zona costeira, entre as linhas de maré alta e baixa, e ao longo da zona intertidal banhada pelos rios, também designada por estuário. Constituem uma comunidade vegetal adaptada a um ambiente volátil, desenvolvendo adaptações específicas que lhes permitem viver em solos salgados e pobres em oxigénio. Os mangais são halófitos, o que significa que são plantas tolerantes ao sal que se desenvolvem em águas salinas, normalmente inóspitas para outras plantas lenhosas. Os mangais evoluíram para formar uma barreira que lhes permite segregar sal através dos seus poros e glândulas das folhas. Os mangais são também vivíparos, o que significa que as suas sementes germinam enquanto estão presas à árvore-mãe e podem flutuar. Os pneumatóforos, um sistema radicular respiratório, permitiram que o mangal se adaptasse à anoxia ou aos baixos níveis de oxigénio do solo circundante, dando aos mangais as suas raízes aéreas únicas e fascinantes. Evolutivamente, existem três regiões independentes de diversificação dos ecossistemas de mangais: O Sudeste Asiático, as Caraíbas e o Pacífico Oriental, e a região do Oceano Índico. Rhizophora e Avicennia são os géneros de mangais dominantes. Em 2020, estimava-se que existiam 147 359 km2 de mangais em todo o mundo – dos quais 51% ocorriam na região da Ásia-Pacífico, 29% nas Américas e 20% em África. 7
Para ir mais fundo…
Ver mais sobre o estado dos mangais do mundo 8
Perda de mangais
Os mangais saudáveis são barreiras naturais contra as tempestades que salvam vidas e protegem as infra-estruturas contra as tempestades mais extremas e a subida do mar, incluindo os ventos marítimos dos ciclones. Também suportam pescas essenciais, incluindo gastrópodes (caracóis e lesmas) e crustáceos (caranguejos), que sustentam a vida quotidiana de dezenas de milhões de pessoas nas zonas costeiras. No entanto, continuamos a desflorestar os mangais, atualmente reduzidos a uma taxa de 0,2 a 0,4% por ano devido, principalmente, à perda causada pelo homem e a fenómenos naturais como a erosão, as inundações e os ciclones, exacerbados pelas alterações climáticas. 9 A produtividade do carbono é também um equilíbrio delicado com as florestas de mangue – quando os mangues são degradados ou desflorestados, as suas capacidades de sequestro de carbono são inibidas, sendo este carbono emitido para a atmosfera. A desflorestação de mangais e outras perdas de florestas azuis representam atualmente 3-19% das emissões globais resultantes da desflorestação.10 Estima-se que a emissão global de CO2 dos manguezais atinja 34,1 Tg C por ano (TgC: teragramas de carbono ou 1012 gramas de carbono)11. Assim, os ecossistemas de mangais podem passar de um sumidouro de carbono para uma fonte de carbono.
Para ir mais fundo…
Veja mais sobre as futuras emissões de carbono da perda global de florestas de mangue12
Ver mais sobre a desflorestação global dos mangais e os seus factores socioecológicos em interação13
As ervas marinhas são plantas marinhas com flores que se encontram em águas pouco profundas desde os trópicos até ao Círculo Polar Ártico, ocorrendo normalmente em zonas costeiras marinhas de fundo mole e estuários. As ervas marinhas são uma das florestas azuis mais difundidas do planeta, encontrando-se em 159 países de seis continentes e cobrindo mais de 300 000 km2 . 14. Frequentemente formando extensos prados submarinos, as ervas marinhas proporcionam habitats altamente produtivos e biologicamente ricos para a vida marinha. As ervas marinhas albergam uma fauna carismática como os dugongos, os manatins, os cavalos-marinhos e as tartarugas marinhas. Podem também proteger as costas da erosão, travar a presença de agentes patogénicos na água, sequestrar e armazenar carbono e contribuir para a segurança alimentar, ajudando a manter unidades populacionais de peixes saudáveis. Isto também apoia os meios de subsistência costeiros associados à pesca e à apanha de conchas nos trópicos.
Características das ervas marinhas
Para que as ervas marinhas vivam debaixo de água, evoluíram com sucesso no Mar de Tétis do final do Cretáceo (70 a 100 milhões de anos atrás) a partir de uma linhagem de plantas de água doce (Alismatales).15 Para prosperar em águas marinhas, as ervas marinhas tiveram de adquirir várias adaptações. Desenvolveram uma estrutura de ancoragem composta por rizomas e raízes, que liga os rebentos individuais através de uma rede de nós para transportar nutrientes e incentivar a formação de prados capazes de resistir à energia das ondas. Desenvolveram também um mecanismo de flutuação, de modo a que as folhas das ervas marinhas se possam manter verticalmente na coluna de água. As ervas marinhas também polinizam na água com frutos vivíparos, absorvendo nutrientes das raízes e das folhas. A nível mundial, ocorrem cerca de 70 espécies de ervas marinhas, pertencentes a quatro famílias de plantas (Zosteraceae, Posidoniaceae, Hydrocharitaceae e Cymodoceaceae)16
Para ir mais fundo…
Ver mais sobre a distribuição global das pradarias de ervas marinhas17
Perda de ervas marinhas
As ervas marinhas são soluções naturais robustas para as alterações climáticas e, embora cubram apenas 0,1% do fundo do oceano,18 Seagrasses store around 18% of oceanic carbon.19 Desde o final do século XIX, quase 30% da área conhecida de ervas marinhas em todo o mundo foi perdida,20 com a degradação a atingir potencialmente 7% por ano.21 As ervas marinhas são afectadas por vários factores de stress antropogénicos e climáticos, como a redução da luz, a poluição por nutrientes e outros tipos de poluição, o assoreamento, o impacto físico e a erosão. Os principais factores de declínio incluem o escoamento urbano, industrial e agrícola, o desenvolvimento costeiro, a dragagem, as actividades de pesca e náutica não regulamentadas e as alterações climáticas.
Os sapais são zonas húmidas de marés com gramíneas, ervas e arbustos tolerantes ao sal que florescem entre a terra e o mar aberto. Encontram-se em baías e estuários ao longo das costas de maré em zonas do mundo com terras baixas e um clima temperado. Ocorrem em 99 países em todo o mundo,22 e estima-se que a sua extensão seja de 90 800 km2 . 23 O fundo sedimentar é frequentemente um pré-requisito para a fixação e o crescimento dos sapais, à medida que estes evoluem de sapais jovens para sapais velhos, sendo os nutrientes também transportados pelas correntes de maré através dos canais de maré. Tal como os mangais, as espécies de sapal são halotolerantes e evoluíram para se adaptarem a águas salinas.
Características dos sapais
Quando a superfície do sapal se eleva acima do nível da água, as espécies dos sapais altos invadem, ultrapassam e substituem as plantas dos sapais baixos. As espécies vegetais mais tolerantes ao stress ocupam as zonas mais baixas dos sapais, enquanto as espécies menos especializadas e competitivas ao stress ocupam as zonas mais altas. A deposição de areia fina e de lama eleva o sapal até aos níveis mais altos da água das marés. O sapal pode então tornar-se terra firme, quase desligada do oceano. Os sapais são pantanosos porque o solo contém frequentemente lama profunda e turfa. A turfa é feita de matéria vegetal em decomposição e tem frequentemente vários metros de espessura. A turfa é encharcada, cheia de raízes e muito esponjosa. Uma vez que as marés submergem frequentemente os sapais e contêm grandes quantidades de matéria vegetal em decomposição, os níveis de oxigénio na turfa podem ser extremamente baixos – uma condição denominada hipoxia.24 A hipoxia é causada pelo crescimento de bactérias que produzem o cheiro a ovo podre sulfuroso frequentemente associado aos pântanos e lodaçais.
Perda de pântanos salgados
Historicamente, os sapais têm enfrentado ameaças significativas devido ao facto de os seres humanos reorientarem os solos ricos em nutrientes para a agricultura ou os drenarem para o desenvolvimento costeiro. Embora algumas espécies de sapal sejam altamente eficazes na filtragem dos nutrientes provenientes dos esgotos, das escorrências urbanas e dos resíduos agrícolas e industriais, nem todas estão igualmente equipadas para filtrar cargas tão elevadas de nutrientes, o que conduz à competição entre espécies e à reestruturação dos sapais, onde apenas as plantas mais tolerantes aos nutrientes podem prosperar. A subida do nível do mar é outro fator de stress para os pântanos, uma vez que estes ficarão mais expostos a inundações provenientes de zonas de águas abertas, provocando um deslocamento para terra. Um dos principais factores de mudança para terra firme é a subida do nível do mar. À medida que o nível do mar aumenta, os sapais migram para altitudes mais elevadas para manter os regimes de inundação e vazante das marés. Este movimento permite-lhes acompanhar a subida do nível das águas e evitar serem inundados. Cerca de 50% dos sapais perderam-se nos últimos 20-50 anos25
Apesar dos múltiplos benefícios dos ecossistemas dos sapais, estes ecossistemas são frequentemente ignorados e pouco estudados. O conhecimento da sua variação espacial global ainda tem de ser completado. Na Noruega, por exemplo, não existia uma terminologia oficial para os sapais até 2020, o que tem implicações para a monitorização e a proteção destes ecossistemas.
As kelps, ou macroalgas gigantes/algas marinhas, são muitas vezes deixadas de fora dos debates sobre o carbono azul porque a contabilização do destino a longo prazo do carbono que armazenam pode ser muito difícil. Além disso, as kelps crescem frequentemente em zonas costeiras rochosas com uma acumulação mínima de solo rico em carbono. As kelp são um dos ecossistemas de vegetação marinha mais extensos do mundo,26 que se encontram em cerca de um quarto das costas mundiais, desde as regiões polares às regiões temperadas. Formam florestas espessas e tridimensionais que abrigam diversas espécies marinhas, incluindo invertebrados, peixes e mamíferos marinhos como elefantes marinhos, lontras marinhas e leões marinhos. As florestas de kelp também podem ser consideradas florestas azuis devido à sua capacidade de armazenamento de carbono. No entanto, o processo pelo qual as algas armazenam carbono é muito diferente do das florestas azuis, uma vez que as algas não têm raízes e sedimentos por baixo delas – em vez disso, têm fixações que são utilizadas para se prenderem a rochas e outros substratos duros. Embora as algas possam armazenar carbono na biomassa em pé, a maior parte do carbono que as algas sequestram é exportado para outros locais à medida que os pedaços de algas se partem e se afastam para diferentes ecossistemas costeiros com vegetação, sedimentos próximos na plataforma costeira e o oceano profundo. Enterrado em sedimentos profundos do fundo do mar, o carbono das algas pode permanecer durante milhares de anos.
Características da alga marinha
Estima-se que as algas tenham tido origem há cerca de 100 milhões de anos.27 Necessitando da luz do sol para fazer fotossíntese, a maioria das florestas de kelp encontra-se desde a borda da água até 25 metros de profundidade.28 Para além da luz solar e do dióxido de carbono, as algas também necessitam de nutrientes inorgânicos, como o nitrato e o fosfato. Crescendo a uma velocidade espantosa, até uma média de 5% por dia,29 kelp consumes plenty of carbon dioxide, revealing the hidden potential for blue carbon sequestration. As algas evoluíram através de uma evolução convergente, o que significa que diferentes grupos desenvolveram independentemente estruturas semelhantes, como lâminas, estipes e esporângios – um tipo de estrutura reprodutiva.
Perda de algas
As algas estão a enfrentar um declínio global na abundância de 1,8% por ano 30 As actividades humanas, como a sobrepesca, a poluição e as alterações climáticas, são factores de stress significativos para as florestas de kelp. Outros factores de stress importantes resultam da redução da qualidade da água através da eutrofização, da poluição, da sedimentação e do escurecimento dos oceanos, em parte devido ao escoamento de água doce proveniente da agricultura e da indústria. Normalmente, as florestas de algas só sobrevivem em águas frias, e o aumento da temperatura da água provocado pelas alterações climáticas pode impossibilitar a adaptação das algas e de outras espécies marinhas. A desflorestação das algas pode também ser atribuída à sobrepesca de predadores de topo que se alimentam de ouriços-do-mar. Quando esta cadeia alimentar é interrompida, os ouriços-do-mar podem pastar as florestas de kelp até estas ficarem estéreis. Apesar das tendências globais de declínio, existe uma grande variação regional no estado das florestas de kelp. Nalgumas regiões temperadas com factores de pressão climática menos intensos, as populações de algas não registaram um declínio. Nalguns casos, estes factores de pressão foram mesmo favoráveis a certas espécies.
Teste os seus conhecimentos:
- Onde e quando evoluíram os mangais e as ervas marinhas?
O carbono azul é o carbono capturado pelos ecossistemas oceânicos e costeiros do mundo. O carbono azul é um termo cunhado em 2009 para chamar a atenção para a degradação dos ecossistemas marinhos e costeiros e para a necessidade de os conservar e restaurar para mitigar as alterações climáticas e os outros serviços ecossistémicos que prestam.31 Os mangais, os sapais e as ervas marinhas são ecossistemas de carbono azul estabelecidos, uma vez que têm frequentemente elevadas reservas de carbono, suportam o armazenamento de carbono a longo prazo, oferecem o potencial de gerir as emissões de gases com efeito de estufa e apoiam outras políticas de adaptação em todo o mundo. Alguns ecossistemas marinhos não satisfazem os critérios críticos de inclusão no quadro do carbono azul (por exemplo, peixes, bivalves e recifes de coral). Outros apresentam lacunas na compreensão científica das reservas de carbono ou dos fluxos de gases com efeito de estufa. Atualmente, o potencial de gestão ou de contabilização do sequestro de carbono é limitado (macroalgas e fitoplâncton), mas estes ecossistemas poderão ser considerados ecossistemas de carbono azul no futuro, quando estas lacunas forem colmatadas
Para ir mais fundo…
Ver mais sobre o futuro da ciência do carbono azul32
O sequestro de carbono consiste na captura, remoção e armazenamento de dióxido de carbono (CO2 ) da atmosfera terrestre e na sua acumulação nos ecossistemas terrestres e marinhos. O carbono é a base de toda a vida na Terra. O carbono ajuda a regular a temperatura da Terra, torna possível toda a vida, é um ingrediente crucial nos alimentos que nos sustentam e fornece uma fonte de energia significativa para alimentar a nossa economia global.
Relativamente ao sequestro de carbono, os oceanos são absorvedores altamente eficientes de CO2 . Absorvem cerca de 30% do CO2 emitido pela atmosfera terrestre.33. Este carbono é mantido principalmente nas camadas superiores dos oceanos. O sequestro de carbono pode evitar que novas emissões contribuam para o aquecimento do planeta. Pode ocorrer de duas formas principais: biologicamente – nos oceanos, nas florestas e no solo – ou geologicamente. As florestas azuis desempenham um papel essencial na atenuação das alterações climáticas, capturando e sequestrando o carbono da atmosfera.
As florestas azuis são um pequeno (em termos de extensão) mas poderoso sumidouro (ou fonte, se degradadas ou perdidas) de carbono, uma vez que os solos e a vegetação destes ecossistemas costeiros pouco profundos armazenam coletivamente entre 10 e 24 mil milhões de toneladas métricas de carbono.34 Uma quantidade significativa do carbono enterrado nos sedimentos costeiros fora das zonas com vegetação também provém dos ecossistemas de carbono azul, uma vez que as correntes transportam matéria orgânica para mais longe na plataforma costeira. Assim, mesmo sem contar com as algas e outras macroalgas, os ecossistemas de carbono azul são responsáveis por cerca de metade do carbono total enterrado anualmente nas zonas costeiras dos oceanos.
Para ir mais fundo…
Ver mais sobre o sequestro de carbono 35
O carbono azul refere-se mais frequentemente ao papel que os pântanos de maré, os mangais e as ervas marinhas podem desempenhar no sequestro de carbono. No entanto, o carbono azul também inclui o carbono armazenado nas águas oceânicas profundas, onde se encontra a grande maioria do carbono oceânico. Estes ecossistemas podem contribuir para a atenuação das alterações climáticas e também para a adaptação baseada nos ecossistemas. Quando os ecossistemas de carbono azul se degradam ou se perdem, voltam a libertar carbono para a atmosfera.
As florestas azuis capturam o CO2 da atmosfera, sequestrando o carbono nos sedimentos subjacentes, na biomassa acima e abaixo do solo e na biomassa morta. Embora os ecossistemas costeiros com vegetação cubram menos área e tenham menos biomassa acima do solo do que as plantas terrestres, podem ter um impacto potencial no sequestro de carbono a longo prazo, particularmente nos sumidouros de sedimentos. Uma das principais preocupações com o carbono azul é o facto de a taxa de perda destes ecossistemas marinhos críticos ser muito mais elevada do que a de qualquer outro ecossistema do planeta, mesmo em comparação com as florestas tropicais. As estimativas actuais sugerem uma perda de 2-7% por ano, o que representa não só a perda de sequestro de carbono e a emissão do carbono armazenado de volta para a atmosfera, mas também a perda de habitat, que é importante para a gestão do clima, a proteção costeira, a saúde humana e a segurança alimentar.36
Teste os seus conhecimentos:
- Que quantidade de carbono azul é armazenada nos ecossistemas de águas pouco profundas?
- O que são florestas azuis?
- O que é o carbono azul?
Embora o sequestro de carbono seja um importante benefício para o ecossistema, existe atualmente um maior reconhecimento na comunidade científica dos outros benefícios das florestas azuis. Saiba mais sobre estes “superpoderes” das florestas azuis no Módulo 3.
Resources


Blue Carbon Explained Videos

Blue Carbon sampling
Blue forests made of marine plants and seaweeds protect our coasts, support biodiversity and capture carbon. Unfortunately, we already lost half of these important and fragile ecosystems worldwide.[...]

Module 5: What Can We Do to Conserve and Restore Blue Forests? (PDF)
Unfortunately, over the last 20–50 years, 50% of salt marshes, 35% of mangroves, and 29% of seagrasses have been lost. Kelp forests are also facing a global decline in abundance of 1.8% per year. Wh[...]
Module 4: Blue Carbon Fieldwork (PDF)
Citizens can certainly play a role in contributing to blue carbon accounting, conducting field assessments of blue carbon following a scientific standardized protocol and after being trained by profes[...]
Module 3: Blue Forests Superpowers (PDF)
Blue forests, such as mangroves, saltmarshes, seagrass, and kelp, are teeming with life and are some of the most diverse habitats on Earth. The value they provide for life above and below water is imm[...]
Module 2: What are Blue Forests? (PDF)
Blue forests refer to vegetated coastal and marine habitats, namely mangrove forests, seagrass meadows, kelp forests, and saltmarshes. Given their key roles and efficiency in sequestering greenhouse g[...]
Module 1: Ocean Literacy and Climate Change (PDF)
For this module, we will highlight the cognitive learning objectives that help us better understand basic marine ecology, ecosystems, the connection of humanity to the sea and the life it holds, inclu[...]
Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy
Blue carbon has made significant contributions to climate change adaptation and mitigation while assisting in achieving co-benefits such as aquaculture development and coastal restoration, winning int[...]
Blue Carbon Conservation in West Africa: A first assessment of feasibility
The loss of blue carbon ecosystems results in significant levels of carbon emissions and decreased supply of other ecosystem services. West Africa contains approximately 14% of the world’s mangrove [...]
Ocean Acidification
The ocean absorbs about 30% of the carbon dioxide (CO2) that is released in the atmosphere. As levels of atmospheric CO2 increase from human activity such as burning fossil fuels (e.g., car emissions)[...]
The Future of Blue Carbon Science
The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate [...]
Status and Trends for the World’s Kelp Forests
Kelp forests are extensive underwater habitats that range along 25% of the world’s coastlines, providing valuable resources, habitat, and services for coastal communities. They grow best in cold, nu[...]
Accelerating Loss of Seagrasses Across the Globe Threatens Coastal Ecosystems
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the bill[...]
Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters
Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known a[...]
Seagrass Community Metabolism: Assessing the carbon sink capacity of seagrass meadows
The metabolic rates of seagrass communities were synthesized on the basis of a data set on seagrass community metabolism containing 403 individual estimates derived from a total of 155 different sites[...]
Extinction Risk Assessment of the World’s Seagrass Species
Seagrasses, a functional group of marine flowering plants rooted in the world’s coastal oceans, support marine food webs and provide essential habitat for many coastal species, playing a critical ro[...]
Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis
Globally, mangrove forests are substantially declining, and a globally synthesized database containing the drivers of deforestation and drivers’ interactions is scarce. Here, we synthesized the key [...]
Future Carbon Emissions from Global Mangrove Forest Loss
Mangroves have among the highest carbon densities of any tropical forest. These ‘blue carbon’ ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse[...]
Seasonal and Temporal CO2 Dynamics in Three Tropical Mangrove Creeks: A revision of global mangrove CO2 emissions
Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the nor[...]
Creation of a High Spatio-temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century
Global mangrove deforestation continues but at a much reduced rate of between 0.16% and 0.39% per year. Southeast Asia is a region of concern with mangrove deforestation rates between 3.58% and 8.08%,[...]
Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0
Mangroves are a globally important ecosystem that provides a wide range of ecosystem system services, such as carbon capture and storage, coastal protection and fisheries enhancement. Mangroves have s[...]
Species Distribution and Habitat Exploitation of Fauna Associated with Kelp (Laminaria Hyperborea) Along the Norwegian Coast
Fauna associated with the common kelp along the Norwegian coast, Laminaria hyperborea, was sampled at four sites covering 1000 km of coastline. Exploitation of the kelp habitat by the fauna, and the[...]
The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis
Saltmarshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous chara[...]
Carbon Accumulation and Storage Across Contrasting Saltmarshes of Scotland
Saltmarshes are acknowledged to be “carbon hotspots” due to their capacity to trap and store large quantities of carbon (C) within their soils and potentially have the ability to regulate climate [...]
Marine Ecosystem Services
Marine ecosystems represent some of the most heavily exploited ecosystems throughout the world. For example, coastal zones make up just 4% of the earth’s total land area and 11% of the world’s oce[...]
A Review of Seagrass Economic Valuations: Gaps and progress in valuation approaches
Multiple studies have documented the ecologically important role that seagrasses play in estuarine and marine ecosystems. Unfortunately, economic valuations of these systems have not been as widesprea[...]
Why Protecting & Restoring Blue Carbon Ecosystems Matters
Mangroves and seagrass meadows are coastal ecosystems that cover a small portion of the total ocean area but collectively are widely distributed on every continent except Antarctica. Mangroves are fou[...]
Contribution of Mangroves to Coastal Carbon Cycling in Low Latitude Seas
The contribution of mangrove carbon to the coastal ocean in low latitudes was evaluated. Mangrove forests occupy only 2% of the world’s coastal ocean area yet they account for about 5% of net pr[...]
Mangroves Among the Most Carbon-Rich Forests in the Tropics
Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrov[...]
Marine Pollution Potentially Mitigated by Kelp Farms
Emerging research from the University of Alaska Fairbanks suggests that implementing kelp farms may be an effective strategy for combatting the growing problem of marine pollution. The university stud[...]
Persistent Organic Pollutants (POPs) in Coastal Wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling
Coastal wetlands, such as mangroves, seagrass beds, and salt marshes, are highly threatened by increasing anthropic pressures, including chemical pollution. Persistent organic pollutants (POPs) have a[...]
The Global Flood Protection Benefits of Mangroves
Coastal flood risks are rising rapidly. Authors provide high resolution estimates of the economic value of mangroves forests for flood risk reduction every 20 km worldwide. Authors develop a probabi[...]
Mangroves for Coastal Defence
The role of mangroves in protecting our coasts against natural hazards such as storms, tsunamis and coastal erosion has been widely acknowledged. Even so, the level of protection provided by mangroves[...]
Ecosystems as Fish Factories
The authors’ initial global model of mangrove fisheries was built up front a detailed review of hundreds of studies from around the world, and informed by an expert panel. In terms of natural pr[...]
Long Distance Biotic Dispersal of Tropical Seagrass Seeds by Marine Mega-herbivores
Terrestrial plants use an array of animals as vectors for dispersal, however little is known of biotic dispersal of marine angiosperms such as seagrasses. This study in the Great Barrier Reef confirms[...]
Mangroves as Feeding and Breeding Grounds
Mangroves are considered as ecosystems that provide shelter, food and breeding grounds for many groups of inhabiting fauna. Much of the fauna present are organisms in different stages of their life cy[...]
Seagrass Ecosystems as a Globally Significant Carbon Stock
The protection of organic carbon stored in forests is considered as an important method for mitigating climate change. Like terrestrial ecosystems, coastal ecosystems store large amounts of carbon, an[...]
Keys to Successful Blue Carbon Projects: Lessons learned from global case studies
Ecosystem services such as protection from storms and erosion, tourism benefits, and climate adaptation and mitigation have been increasingly recognized as important considerations for environmental p[...]
Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems – marshes, mangroves, and seagrasses – that may be lost with habitat destruction (R[...]
The Ocean Carbon Cycle
The ocean holds vast quantities of carbon that it continually exchanges with the atmosphere through the air-sea interface. Because of its enormous size and relatively rapid exchange of carbon with the[...]
A Drop in the Ocean: Closing the gap in ocean climate finance
The ocean is a fundamental economic and environmental engine providing the services that are critical for the success of every economy and the very survival of life on our planet. And yet, it is serio[...]
Ocean Circulation and Climate During the Past 120,000 Years
Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is t[...]
Illegal, Unreported and Unregulated Fishing and Associated Drivers
Illegal, unreported and unregulated (IUU) fishing accounts for 20% of the world catch and up to 50% in some areas. This industry often uses bonded labour, destructive fishing practices and deceptive p[...]
Closing Loopholes: Getting Illegal Fishing Under Control
Decreasing numbers of fish caught in global fisheries, overcapacity of fishing fleets, and rising demand for fish heighten the negative impacts of illegal, unreported, and unregulated (IUU) fishing an[...]
Beyond Plastic Waste
With more than 8 million tons of plastic entering the ocean each year, humanity must urgently rethink the way we make and use plastics, so that they do not become waste in the first place. Cheap, ligh[...]
The Keeling Curve: A daily record of global atmospheric carbon dioxide concentration
The Keeling Curve is a daily record of global atmospheric carbon dioxide concentration maintained by Scripps Institution of Oceanography at UC San Diego. Scripps CO2 measurements at Mauna Loa have bee[...]
Despite Pandemic Shutdowns, Carbon Dioxide and Methane Surged in 2020
Carbon dioxide levels are now higher than at anytime in the past 3.6 million years. Levels of the two most important anthropogenic greenhouse gases, carbon dioxide and methane, continued their unrelen[...]
Adaptive Water Resources Management Under Climate Change: An Introduction
Readers of this journal are well aware of the challenges of managing one of our planet’s most critical natural resources: water. We professionals, the people we serve, and indeed the entire world’[...]
Blue Carbon: The potential of coastal and oceanic climate action
The oceans and coasts are the Earth’s climate regulators. Covering 72 percent of the planet’s surface, they have absorbed about 40 percent of carbon emitted by human activities since 1850.1 Coasta[...]
Ocean Acidification and Other Ocean Changes
The world’s oceans have absorbed about 93% of the excess heat caused by greenhouse gas warming since the mid-20th century, making them warmer and altering global and regional climate feedbacks. Ocea[...]
The Magnitude of Global Marine Species Diversity
The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine s[...]
Why the Ocean Matters in Climate Negotiations
The ocean takes up heat and carbon, reducing the adverse effects of climate change. The ocean plays a central role in regulating our climate and weather. The ocean has taken up more than 90% of the ex[...]
SDG 14: Conserve and sustainably use the oceans, seas and marine resources
Sustainable Development Goal 14 is to “conserve and sustainably use the oceans, seas, and marine resources for sustainable development, according to the United Nations. The visualizations and data o[...]
This Interactive Chart Shows Changes in the World’s Top 10 Emitters
A lot has happened since countries met in Paris in 2015 and agreed on an accord to combat climate change. So far, 196 countries ratified or otherwise joined the Paris Climate Agreement, representing m[...]
4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors
Globally, greenhouse gas emissions have grown by 53% from 1990 to 2019. Where are these emissions coming from, and who is responsible? WRI’s Climate Watch platform offers comprehensive emissions dat[...]
Value Theory
Multiattribute value theory (MAVT) is a simplification of MAUT: MAVT does not seek to model the decision maker’s attitude to risk. [...]
The Global Flood Protection Benefits of Mangroves
Coastal flood risks are rising rapidly. We provide high resolution estimates of the economic value of mangroves forests for flood risk reduction every 20 km worldwide. We develop a probabilistic, pr[...]
Estuarine fish and shellfish species in U.S. commercial and recreational fisheries : economic value as an incentive to protect and restore estuarine habitat
Commercial and recreational fisheries generate billions of dollars each year for the U.S. economy. In 2006, 9.5 billion pounds of commercial catch was valued at $4.0 billion. This value is enhanced by[...]
Seagrass ecosystems as a globally significant carbon stock
The protection of organic carbon stored in forests is considered as an important method for mitigating climate change. Like terrestrial ecosystems, coastal ecosystems store large amounts of carbon, an[...]
Blue Carbon Quiz
Test your knowledge on blue carbon ecosystems by taking this short quiz by the High Level Panel for A Sustainable Ocean Economy. [...]
Blue Carbon: The Role of Healthy Oceans in Binding Carbon
This report is considered a key document in blue carbon science. The objective of this report is to highlight the critical role of the oceans and ocean ecosystems in maintaining our climate and in ass[...]
Wetland Restoration Citizen Science Program
This short video presents the role of citizens for blue carbon assessment: the Wetland Restoration Citizen Science Program (Australia), also known as the Blue Carbon Army. [...]
Kunming-Montreal Global Biodiversity Framework and 2030 Targets
The Kunming-Montreal Global Biodiversity Framework has 23 action-oriented global targets for urgent action over the decade to 2030. The actions set out in each target need to be initiated immediately [...]
Carbon Neutrality Roadmap 2050: Decarbonizing isn’t an empty word, it is a call to action
Video featuring Portuguese climate goals for 2050. Carbon Neutrality Roadmap 2050 – “Decarbonizing isn’t an empty word, it is a call to action”. Imagine it is the year 2050… desp[...]
Ecosystem Restoration Playbook: A practical guide to healing the planet
Healthy ecosystems are vital to meeting those goals. Restoring them is a massive challenge. But more and more people realize that we must change our ways and move urgently to protect and rebuild natur[...]
After 90% of California’s Kelp Forests Were Destroyed, SeaTrees Is Restoring Them
Video featuring a kelp restoration in California. “Could you imagine if 90 percent of the trees on land disappeared in 10 years?” Kevin Whilden, co-founder of Sustainable Surf and SeaTrees, lobs t[...]
Researchers Rush to Protect the UK’s Saltmarshes from Sea Level Rise
Saltmarshes sequester significant carbon in their sediment — more per hectare than tropical rainforests. They protect the land from storm surges and sea level rise, and they shelter a variety of bir[...]
Project Seagrass
Project Seagrass is a global facing environmental charity devoted to the conservation of seagrass ecosystems through research, community and action. [...]
The World’s Biggest Island Country Battles Coastal Erosion
We are experiencing a dangerous decline in nature: One million species are threatened with extinction, soils are turning infertile and water sources are drying up. But there are glimmers of hope: Made[...]
Nationally Determined Contributions (NDCs)
Nationally determined contributions (NDCs) are at the heart of the Paris Agreement and the achievement of its long-term goals. NDCs embody efforts by each country to reduce national emissions and adap[...]
United Nations Sustainable Development Goals
The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides a shared blueprint for peace and prosperity for people and the planet, now and into the futur[...]
Understanding the Role of Conceptual Frameworks: Reading the ecosystem service cascade
The aim of this paper is to identify the role of conceptual frameworks in operationalising and mainstreaming the idea of ecosystem services. It builds on some initial discussions from IPBES, which sug[...]
Atmospheric Carbon by Birth Year Calculator
How much carbon was in the atmosphere when you were born? [...]
Sustainable development, poverty eradication and reducing inequalities. In: Global warming of 1.5°C. An IPCC Special Report
An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response t[...]
On Defining Climate and Climate Change
The aim of the article is to provide a clear and thorough conceptual analysis of the main candidates for a definition of climate and climate change. [...]
Connecting to the oceans
Improved public understanding of the ocean and the importance of sustainable ocean use, or ocean literacy, is essential for achieving global commitments to sustainable development by 2030 and beyond. [...]
Tahiry Honko – a community mangrove carbon project
GRID-Arendal produced an update to this video originally created by Blue Ventures at https://vimeo.com/131638557 Learn how Madagascar's first mangrove carbon project is catalysing locally-led mangrov[...]
World’s first underwater climate strike calls for ocean protection
Young Mauritian scientist and climate advocate, Shaama Sandooyea, has held the world’s first ever underwater climate strike at the heart of the Indian Ocean. The protest took place at the Saya de Ma[...]
Restoration of seagrasses
This video shows seagrass meadows in Portugal that have been restored, and how this was made possible through the SeagHorse project. [...]
Blue carbon manual – Guidelines for estimating blue carbon stocks
Conservation and restoration of blue forests ecosystems has been increasingly addressed in international and national climate change mitigation policy and finance mechanisms. However, to date, countri[...]
Blue Carbon Protocol
The Blue Carbon Protocol outlines how to perform a carbon assessment, from sampling in the field to the lab analysis. The Blue Carbon Protocol outlines how to perform a carbon assessment from sampling[...]
Blue Carbon Protocol
The Blue Carbon Protocol outlines how to perform a carbon assessment, from sampling in the field to the lab analysis. The Blue Carbon Protocol outlines how to perform a carbon assessment from sampling[...]
NASA and Mangroves
Mangroves are coastal ecosystems that provide important services to coastal populations. They offer natural protection against storm surges, hurricanes and tsunamis. Mangroves also contribute to fish[...]
Mangroves: A Super Solution
Mangroves are an amazing #ClimateAction Super Solution, they are effective carbon sinks, storing four times more CO2 than rainforests. And when it comes to storm protection and sea level rise, mang[...]

Blue Carbon Offsetting for Community Benefits in Kenya
James Kairo and Salim Abdalla from Mikoko Pamoja talk about their community-based mangrove carbon offset project in Kenya. This blue solution focuses on climate change mitigation and awareness creatio[...]
Recognizing Ecosystem Services from Blue Carbon Ecosystems
Infographic illustrates the recognition of ecosystem services from Blue Carbon ecosystems through ecosystem connections. Infographic from the Abu Dhabi Blue Carbon Demonstration Project: https://grid.[...]
Blue Carbon Storage Capacity of Blue Forests
Blue Carbon ecosystems provide a highly valuable service by sequestering and storing atmospheric carbon. Infographic from the Abu Dhabi Blue Carbon Demonstration Project. https://grid.cld.bz/The-Abu-D[...]
Introduction to Seagrass Meadows
Introduction to Seagrass Meadows [...]
Introdução às pradarias marinhas
Introdução às pradarias marinhas [...]
How do Blue Forests Provide Coastal Protection Against Storm Surges?
Blue forests ecosystems like mangroves, seagrass, kelp, and salt marshes can help protect coastal communities against storm surge and coastal flooding by absorbing wave energy. This wave tank demonst[...]
Hvilken nytte har vi av blå skog?
Blå skoger gir viktige økosystemtjenester som fiskebarnehager og beiteområder, kystbeskyttelse mot stormer og erosjon, karbonlagring og mye mer. Se videoen for å lære mer om disse tjenestene so[...]
Why are Blue Forests Useful?
Blue forests provide key ecosystem services like fish nurseries and grazing areas, coastline protection from storms and erosion, carbon storage, and much more. Watch to learn about the many benefits[...]
A New Generation of Ocean Farmers are Reducing Pollution with Seaweed
Seaweed soaks up carbon and nitrogen, two pollutants lingering in the water. If ocean farmers devoted a little less than 5 percent of U.S. waters to growing seaweed, they could clean up an estimated 1[...]
Provisioning and Supporting Services of Mangroves
There are a number of tangible products that can be directly utilised and marketed from mangrove forests. [...]
Seagrasses, Nature’s Water Filter
In many systems, vegetated estuarine habitats such as salt marshes and seagrass beds act as a natural water filtration system—where sediment and nutrient-rich water flows in and cleaner water flows [...]
Protecting Ecosystem Services and Biodiversity
Ecosystem services are the engine of the environment. They are essential to life. Land, water, air, climate and genetic resources must be used responsibly if they are to also benefit future generation[...]
What Is Blue Carbon and Why Does It Matter?
Though terrestrial forests typically get most of the attention, they are not the only ecosystems that possess a natural ability to fight climate change. There are three coastal ecosystems that are als[...]
The Colors of Carbon
A full spectrum of colour-based descriptions has emerged to describe the properties and distribution of organic carbon: black, brown, red, blue, green and teal. This colour-based terminology contribut[...]
Hva truer blå skog i Norge?
Blå skoger forsvinner i et alarmerende tempo rundt om i verden, hovedsakelig på grunn av menneskelige påvirkninger og klimaendringer. Se videoen for å lære mer om de underliggende årsakene til [...]
Hva er blå skog?
Blå skoger – ålegressenger, mangroveskoger, tareskoger, tang og tidevannseng-og sump – er kyst- og marineøkosystemer som binder karbon og gir en mengde økosystemtjenester. Se videoen for å [...]
How are Blue Forests Threatened in Norway?
Blue forests around the world are disappearing at an alarming rate mostly due to human impacts and climate change. Watch to learn more about the underlying causes threatening blue forests, and how t[...]
What are Blue Forests?
Blue forests – seagrass meadows, mangrove forests, kelp forests, rockweed, and salt marshes – are coastal and marine ecosystems that sequester carbon and provide a multitude of ecosystem services [...]
The Magic of Seagrass
A toolkit to help raise awareness of seagrass — the ocean’s wild savannas. Use the Toolkit to help inspire seagrass protection and restoration [...]
The Magic of Mangroves
A toolkit to help raise awareness of mangroves — the world’s most important trees. Use it to help inspire mangrove protection and restoration. [...]
What are Mangrove Forests?
Mangroves are shrubs and trees that grow in coastal waters. Mangroves are halophytes, meaning they are salt-tolerant trees that thrive in intertidal conditions. These diverse and productive ecosystems[...]
5 “Blue Forests” That are Vital to Life on Earth
When you think of a forest, chances are you picture trees rising high above you, leaves crunching underfoot. But there are some very different types of forest – in and under the water – th[...]
Understanding Blue Carbon
Blue carbon refers to carbon dioxide that is absorbed from the atmosphere and stored in the ocean. “Blue” refers to the watery nature of this storage. The vast majority of blue carbon is carbon di[...]
What is Carbon Sequestration?
Carbon sequestration – the practice of removing carbon from the atmosphere and storing it – is one of the many approaches being taken to tackle climate change. Find out why this method is being us[...]
Kelp Deforestation: Threats to our Underwater Forests
Kelp forests are some of the most dynamic and ecologically productive marine habitats in the world. A root-like system called a holdfast affixes to the rocky seafloor, supporting a long stipe that ext[...]
The Biological Productivity of the Ocean
Productivity fuels life in the ocean, drives its chemical cycles, and lowers atmospheric carbon dioxide. Nutrient uptake and export interact with circulation to yield distinct ocean regimes. [...]
The Blue Carbon Initiative
Through this resource, readers can learn more about about blue carbon and how it contributes to mitigating climate change. [...]
Deep Sea Fun
What types of marine life can be found in the deep sea? This online exercise comes to you from Neal Agarwal. [...]
The Carbon Cycle – Essential for Life on Earth
Carbon is an essential building block for life. Learning how carbon is converted through slow- and fast-moving cycles helps us understand how this life-sustaining element moves through the environment[...]
Ocean Carbon Dioxide levels. An invisible time bomb?
Ocean Acidification is perhaps the most well publicised consequence of increased levels of carbon dioxide being absorbed by our oceans. But as the oceans also absorb vast quantities of heat from ou[...]

The Ocean Carbon Cycle
Without the contribution of oceans and coastal ecosystems to global biological carbon sequestration, today’s CO2 concentration in the atmosphere would be much larger than it is. But the uptake capac[...]
The Carbon Cycle
Carbon is the basis of all organic substances, from fossil fuels to human cells. On Earth, carbon is continually on the move – cycling through living things, the land, ocean, atmosphere. What happen[...]
Chasing a Global Coral Reef Bleaching Event
Coral reefs around the world have experienced the widest-spread, longest and most damaging bleaching event on record. The Ocean Agency, armed with custom-built 360-degree underwater cameras, raced aro[...]
Our Incredible Ocean
A visual toolkit to help raise awareness of the fundamental importance of the ocean to life on Earth, and help inspire ocean protection. This resource corresponds with the seven Ocean Literacy Essenti[...]
Global Carbon Atlas
An online interactive tool to explore and visualize the most up-to-date data on carbon fluxes resulting from human activities and natural processes [...]
Show your Stripes
This resource allows you to see the “stripes” of global warming in the planet or in your country. [...]
How Much Carbon was in the Atmosphere When you Were Born?
This resource allows you to see how the CO2 concentration has changed in the atmosphere since you were born. [...]
What is Ocean Acidification?
The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. It is the little known consequence of living in a [...]
Why is pH Important?
pH is important for a wide range of industries from aquaculture to wastewater treatments that require an accurate pH reading, especially when it comes down to human safety. [...]
2020 Was One of Three Warmest Years on Record
The year 2020 was one of the three warmest on record, and rivalled 2016 for the top spot, according to a consolidation of five leading international datasets by the World Meteorological Organization ([...]
Marine Life Cycles
Although at the surface the ocean can appear calm and quiet, in fact there is an enormous amount of life activity taking place, particularly at certain times of the year. [...]
How Does CO2 Affect pH In Water?
The amount of carbon dioxide (CO2) in a solution is one of the many factors that determines the pH of water. When CO2 levels increase in water, the pH level drops, which makes the water become more ac[...]
What are El Niño and La Niña?
El Niño and La Niña are climate patterns in the Pacific Ocean that can affect weather worldwide and can also have global impacts on weather, wildfires, ecosystems, and economies. [...]
Measuring progress towards the Sustainable Development Goals
The goal of SDG 14 – Life Below Water is to conserve and sustainably use the oceans, seas and marine resources. The UN has defined 10 Targets and 10 Indicators for SDG 14. Targets specify the go[...]